

COARSE3D: Class-Prototypes for Contrastive Learning in Weakly-Supervised 3D Point Cloud Segmentation

Rong Li¹ Anh-Quan Cao² Raoul de Charette²

Arxiv: https://arxiv.org/abs/2210.01784 GitHub: https://github.com/cv-rits/COARSE3D

Problem Statement

Fully supervised LiDAR semantic segmentation

- Annotation of large-scale 3D data is cumbersome and costly (e.g. 1700 hours for SemanticKITTI.)
- 3D annotation requires constant view rotation, more complex than 2D.

Problem Statement

Fully supervised LiDAR semantic segmentation

- Annotation of large-scale 3D data is cumbersome and costly (e.g. 1700 hours for SemanticKITTI.)
- 3D annotation requires constant view rotation, more complex than 2D.

Weakly supervised LiDAR semantic segmentation

- Train the model using weak label, e.g. 0.01%.
- Prediction at full 100% ratio.

Overview

Overview

1. Pixel-prototype-based contrastive loss (\mathcal{L}^{nce})

From [27, 54, 81], contrastive learning helps 3d label-limited tasks.

$$\mathcal{L}^{\text{nce}} = \frac{1}{N_a} \sum_{a_i \in \mathcal{A}} -\log \frac{\sum_{p_j^+ \in \mathcal{P}^+} \exp(a_i \cdot p_j^+)}{\sum_{p_j^+ \in \mathcal{P}^+} \exp(a_i \cdot p_j^+ / \tau) + \sum_{p_j^+ \in \mathcal{P}^-} \exp(a_i \cdot p_j^- / \tau)}$$

- Anchors (\mathcal{A})
 - Sampled point-wise features from prediction
- Keys
 - Positive keys (\mathcal{P}^+) : prototypes with same semantic
 - Negative keys (\mathcal{P}^{-}) : prototypes with different semantic

[27] Hou et al. Exploring data-efficient 3d scene understanding with contrastive scene contexts. CVPR 2021[54] David et al. Language-grounded indoor 3d semantic segmentation in the wild. ECCV 2022[81] Xie et al. Pointcontrast: Unsupervised pre-training for 3d point cloud understanding. ECCV 2020

2. Prototype memory bank

From [26, 70], contrastive learning requires massive data to learn good representation

- Semantically redundant
- Costly in memory and computation e.g. (K, N, dim)

[26] He et al. Momentum contrast for unsupervised visual representation. CVPR 2020[70] Wang et al. Exploring cross-image pixel contrast for semantic segmentation. ICCV 2021

2. Prototype memory bank

From [26, 70], contrastive learning requires massive data to learn good representation

- Semantically redundant
- Costly in memory and computation e.g. (K, N, dim)

• Efficient in memory and computation e.g. (K, M, dim)

[26] He et al. Momentum contrast for unsupervised visual representation. CVPR 2020[70] Wang et al. Exploring cross-image pixel contrast for semantic segmentation. ICCV 2021

2. Prototype memory bank

I. Online prototype clustering

 Compute pixel-prototypes mapping framed as an optimal transport problem using Sinhorn algorithm[18].

2. Prototype memory bank

Constrative learning training

I. Online prototype clustering

• Compute pixel-prototypes mapping framed as an optimal transport problem using Sinhorn algorithm[18].

II. Online prototype update

• With momentum ($\sigma = 0.999$), j^{th} prototype $\{P_k\}_j$ of class k is updated as

$$\{P_k\}_j = \sigma\{P_k\}_j + (1 - \sigma) \frac{1}{\sum_{i=1}^{N_k} [[m(x_i) = j]]} \sum_{i=1}^{N_k} x_i [[m(x_i) = j]]$$

• $m(x_i)$ is the prototype mapping of point x_i .

[18] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. NeuRIPS 2013

2. Prototype memory bank

Constrative learning training

I. Online prototype clustering

- Compute pixel-prototypes mapping framed as an optimal transport problem using Sinhorn algorithm[18].
- II. Online prototype update
- With momentum ($\sigma = 0.999$), j^{th} prototype $\{P_k\}_j$ of class k is updated as

$$\{P_k\}_j = \sigma\{P_k\}_j + (1 - \sigma) \frac{1}{\sum_{i=1}^{N_k} [[m(x_i) = j]]} \sum_{i=1}^{N_k} x_i [[m(x_i) = j]]$$

• $m(x_i)$ is the prototype mapping of point x_i .

III. Compute contrastive loss

• Prototypes $\{P_k\}_j$ serves as keys in the training.

$$\mathcal{L}^{\text{nce}} = \frac{1}{N_a} \sum_{a_i \in \mathcal{A}} -\log \frac{\sum_{p_j^+ \in \mathcal{P}^+} \exp(a_i \cdot p_j^+)}{\sum_{p_j^+ \in \mathcal{P}^+} \exp(a_i \cdot p_j^+ / \tau) + \sum_{p_j^+ \in \mathcal{P}^-} \exp(a_i \cdot p_j^- / \tau)}$$

[18] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. NeuRIPS 2013

3. Entropy-driven sampling

From [58], Shannon entropy can evaluate the prediction quality

I. Entropy-driven sampling

• Sample relevant pseudo-labels predictions based on Shannon entropy $H(x_i)$ of point x_i .

[58] Claude Elwood Shannon. A mathematical theory of communication. SIGMOBILE 2001.

3. Entropy-driven sampling

From [58], Shannon entropy can evaluate the prediction quality

Constrative learning training

I. Entropy-driven sampling

• Sample relevant pseudo-labels predictions based on Shannon entropy $H(x_i)$.

$$\rho(x_i) = \frac{\exp - H(x_i)^2}{\sum_{x_i \in \chi} \exp - H(x_i)^2}$$

• $\rho(x_i)$ is the sampling probability of point x_i .

II. Compute contrastive loss

Sampled embedding serves as anchors in the training.

$$\mathcal{L}^{\text{nce}} = \frac{1}{N_a} \sum_{a_i \in \mathcal{A}} -\log \frac{\sum_{p_j^+ \in \mathcal{P}^+} \exp(a_i \cdot p_j^+)}{\sum_{p_j^+ \in \mathcal{P}^+} \exp(a_i \cdot p_j^+ / \tau) + \sum_{p_j^+ \in \mathcal{P}^-} \exp(a_i \cdot p_j^- / \tau)}$$

[58] Claude Elwood Shannon. A mathematical theory of communication. SIGMOBILE 2001.

Results

I. SemanticKITTI

- 64 beams LiDAR
- Collected in Germany
- Most popular benchmark

II. nuScenes

- 32 beams LiDAR
- Collected in America and Singapore
- Different weather and season

III. SemanticPOSS

- 40 beams LiDAR
- Collected in China
- Denser and smaller

Results on SemanticKITTI

bicycle car motorcycle truck other vehicle person bicyclist motorcyclist proad parking sidewalk other ground building fence vegetation trunk terrain pole traffic sign

Analysis

SQN. Hu et al. ECCV 2022.
 SalsaNext. Tiago et al. ISVC 2020.
 SqueezeSegV3. Xu et al. ECCV 2020.
 (AF)2S3Net. Cheng et al. CVPR 2021.

- Improve ~5% compared to SQN and reach SOTA
- Outperforms baseline method SalsaNext

Anno. (%)	Method	Proj	mloU (%)
	(AF) ² S3Net [5]	×	69.7
100	SquSegV3 [4]	2	55.9
	SalsaNext [2]	N	59.5
	SQN [1]	×	<u>50.8</u>
0.1	SalsaNext [2]	2	50.1
	Ours	N	55.7
	SQN [1]	×	39.1
0.01	SalsaNext [2]	2	<u>42.6</u>
	Ours	N	46.2

Results on nuScenes

barrier bicycle bus car construction vehicle motorcycle pedestrian traffic cone trailer truck driveable surface other flat sidewalk terrain manmade vegetation

	Anno. (%)	Method	Proj	mloU (%)
Analysis		PolarNet [6]		72.2
 Better than SalsaNext in 0.1% annotation 		Cylinder3D [7]	×	76.1
 Clustering fails to associate labels/prototypes 	100	(AF) ² S3Net [5]		78.0
in 0.01% annotation		RangeNet[3]	2	65.5
		SalsaNext [2]	N	72.2
	0.1	SalsaNext [2]	2	56.5
[2] SalsaNext. Tiago et al. ISVC 2020.	0.1	Ours	N	58.7
[3] Rangenet. Milioto et al. IROS 2019. [5] (AF)2S3Net. Cheng et al. CVPR 2021.	0.01	SalsaNext [2]		44.5
[6] PolarNet. Zhang et al. CVPR 2020. [7] Cylinder3D. Zhu et al. CVPR 2021.	0.01	Ours	N	42.9

16

Results on SemanticPOSS

■people ■rider ■car ■trunk ■plants ■traffic-sign ■pole ■trashcan ■building ■cone/stone ■fence ■bike ■road

Analysis

 Outperform SalsaNext (baseline) in both 0.1% and 0.01%

Anno. (%)	Method	Proj	mloU (%)
	RandLANet[8]		53.5
	KPConv [9]	×	55.2
100	JS3C-Net [10]		60.2
	SquSegV2[11]	.1	29.8
	SalsaNext [2]	V	45.0
0.1	SalsaNext [2]		38.9
	Ours	V	43.0
0.01	SalsaNext [2]		27.4
	Ours		31.1

[2] SalsaNext. Tiago et al. ISVC 2020.
[8] RandLANet. Hu et al. CVPR 2020.
[9] KPConv. Thomas et al. ICCV 2019.
[10] JS3C-Net. Yan et al. AAAI 2021.
[11] SqueezeSegV2. Wu et al. ICRA 2018.

Ablation Study

Methods	SemPOSS mloU (%)	SemKITTI mloU (%)	
Rangenet-21 [3]	25.1	40.7	
Ours (Rangenet-21)	28.9 (+3.8)	44.5 (+3.8)	
SqueezeSegV3-21 [4]	30.4	42.5	
Ours (SqueezeSegV3-21)	36.7 (+6.3)	48.5 (+6.0)	
SalsaNext [2]	38.9	52.4	
Ours (SalsaNext)	43.0 (+4.1)	57.6 (+5.2)	

Chains of backhana

COARSE3D performs consistently with different backbones.

[2] Tiago et al. Salsanext: Fast, uncertaintyaware semantic segmentation of lidar point clouds. ISVC 2020. [3] Milioto et al. Rangenet ++: Fast and accurate lidar semantic segmentation. IROS 2019. [4] Xu et al. Squeezesegv3: Spatially-adaptive convolution for efficient point-cloud segmentation. ECCV 2020.

Ablation Study

Architecture ablation

Methods	mloU (%)
Ours	57.57
w/o contrast module	55.44
w/o anchor sampling	<u>56.32</u>
w/o prototype (5k pxl)	56.10
w/o voxel propagation	56.26
w/o Focal loss	42.41
w/o Lovasz loss	56.10

Ablation Study

Anno	mloU (%)		
Anno.	SalsaNext [2]	Ours	
0.001%	30.39	31.69	
0.01%	44.00	47.13	
0.1%	52.43	56.61	
1%	56.16	58.30	
100%	56.44	58.39	

- Outperform the baseline method in the different annotations.
- Reach the comparable performance with 100% label at 0.1%

Conclusion

- An <u>architecture-agnostic framework</u> for weaklysupervised LiDAR semantic segmentation.
- A <u>prototype memory bank</u> that captures per-class dataset information with an <u>entropy-driven</u> <u>sampling</u> technique to sample more confident pixels as anchors.
- Results on <u>3 baseline architectures</u> and <u>3 datasets</u> demonstrate the effectiveness.

https://github.com/cv-rits/COARSE3D