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Problem Statement
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Fully supervised LiDAR semantic segmentation
• Annotation of large-scale 3D data is cumbersome 

and costly (e.g. 1700 hours for SemanticKITTI. )
• 3D annotation requires constant view rotation, more 

complex than 2D.
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Fully supervised LiDAR semantic segmentation
• Annotation of large-scale 3D data is cumbersome 

and costly (e.g. 1700 hours for SemanticKITTI. )
• 3D annotation requires constant view rotation, more 

complex than 2D.

Weakly supervised LiDAR semantic segmentation
• Train the model using weak label, e.g. 0.01%.
• Prediction at full 100% ratio.
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• Anchors (𝒜𝒜)
• Sampled point-wise features from prediction

• Keys
• Positive keys (𝒫𝒫+): prototypes with same semantic
• Negative keys (𝒫𝒫−): prototypes with different semantic

Online 
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Keys

Entropy-driven
sampling

1. Pixel-prototype-based contrastive loss (        )
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∑𝑝𝑝𝑗𝑗+∈𝒫𝒫+ exp 𝑎𝑎𝑖𝑖 ⋅ 𝑝𝑝𝑗𝑗+ ∕ 𝜏𝜏 +∑𝑝𝑝𝑗𝑗+∈𝒫𝒫− 𝑒𝑒𝑒𝑒𝑝𝑝 𝑎𝑎𝑖𝑖 ⋅ 𝑝𝑝𝑗𝑗− ∕ 𝜏𝜏

From [27, 54, 81], contrastive learning helps 3d label-limited tasks.

[27] Hou et al. Exploring data-efficient 3d scene understanding with contrastive scene contexts. CVPR 2021 
[54] David et al. Language-grounded indoor 3d semantic segmentation in the wild. ECCV 2022 
[81] Xie et al. Pointcontrast: Unsupervised pre-training for 3d point cloud understanding. ECCV 2020
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2. Prototype memory bank

• Semantically redundant
• Costly in memory and computation 

e.g. (K, N, dim)

Pixel memory bank

From [26, 70], contrastive learning requires massive data to learn good representation

[26] He et al. Momentum contrast for unsupervised visual representation. CVPR 2020
[70] Wang et al. Exploring cross-image pixel contrast for semantic segmentation. ICCV 2021 
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2. Prototype memory bank

• Semantically redundant
• Costly in memory and computation 

e.g. (K, N, dim)

Pixel memory bank Prototype memory bank

• Efficient in memory and computation 
e.g. (K, M, dim)

From [26, 70], contrastive learning requires massive data to learn good representation

[26] He et al. Momentum contrast for unsupervised visual representation. CVPR 2020
[70] Wang et al. Exploring cross-image pixel contrast for semantic segmentation. ICCV 2021 
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I. Online prototype clustering

• Compute pixel-prototypes mapping framed as an 
optimal transport problem using Sinhorn algorithm[18].

[18] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. NeuRIPS 2013
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I. Online prototype clustering

• Compute pixel-prototypes mapping framed as an optimal 
transport problem using Sinhorn algorithm[18].

II. Online prototype update

• With momentum (𝜎𝜎 = 0.999), 𝑗𝑗𝑡𝑡𝑡 prototype 𝑃𝑃𝑘𝑘 𝑗𝑗 of 
class 𝑘𝑘 is updated  as

[18] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. NeuRIPS 2013

• 𝑚𝑚(𝑒𝑒𝑖𝑖) is the prototype mapping of point 𝑒𝑒𝑖𝑖.

𝑃𝑃𝑘𝑘 𝑗𝑗 = 𝜎𝜎 𝑃𝑃𝑘𝑘 𝑗𝑗 + (1 − 𝜎𝜎)
1

∑𝑖𝑖=1
𝑁𝑁𝑘𝑘 𝑚𝑚 𝑒𝑒𝑖𝑖 = 𝑗𝑗

�
𝑖𝑖=1

𝑁𝑁𝑘𝑘

𝑒𝑒𝑖𝑖 𝑚𝑚 𝑒𝑒𝑖𝑖 = 𝑗𝑗
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I. Online prototype clustering

• Compute pixel-prototypes mapping framed as an optimal 
transport problem using Sinhorn algorithm[18].

II. Online prototype update

• With momentum (𝜎𝜎 = 0.999), 𝑗𝑗𝑡𝑡𝑡 prototype 𝑃𝑃𝑘𝑘 𝑗𝑗 of class 𝑘𝑘
is updated  as

• 𝑚𝑚(𝑒𝑒𝑖𝑖) is the prototype mapping of point 𝑒𝑒𝑖𝑖.

[18] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. NeuRIPS 2013

III. Compute contrastive loss

• Prototypes 𝑃𝑃𝑘𝑘 𝑗𝑗 serves as keys in the training. 

𝑃𝑃𝑘𝑘 𝑗𝑗 = 𝜎𝜎 𝑃𝑃𝑘𝑘 𝑗𝑗 + (1 − 𝜎𝜎)
1

∑𝑖𝑖=1
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3. Entropy-driven sampling
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I. Entropy-driven sampling

• Sample relevant pseudo-labels predictions based on 
Shannon entropy 𝐻𝐻(𝑒𝑒𝑖𝑖) of point 𝑒𝑒𝑖𝑖.

From [58], Shannon entropy can evaluate the prediction quality

[58] Claude Elwood Shannon. A mathematical theory of communication. SIGMOBILE 2001.

Entropy 𝐻𝐻(𝑒𝑒𝑖𝑖)

Embedding

MaskProbability 𝜌𝜌 𝑒𝑒𝑖𝑖

Sampled Embedding

𝜌𝜌 𝑒𝑒𝑖𝑖 =
exp − 𝐻𝐻(𝑒𝑒𝑖𝑖)2

∑𝑥𝑥𝑖𝑖𝜖𝜖𝜖𝜖 exp − 𝐻𝐻(𝑒𝑒𝑖𝑖)2

Sampling
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I. Entropy-driven sampling

• Sample relevant pseudo-labels predictions based on Shannon 
entropy 𝐻𝐻(𝑒𝑒𝑖𝑖).

𝜌𝜌 𝑒𝑒𝑖𝑖 =
exp − 𝐻𝐻(𝑒𝑒𝑖𝑖)2

∑𝑥𝑥𝑖𝑖𝜖𝜖𝜖𝜖 exp − 𝐻𝐻(𝑒𝑒𝑖𝑖)2

• 𝜌𝜌 𝑒𝑒𝑖𝑖 is the sampling probability of point 𝑒𝑒𝑖𝑖.

From [58], Shannon entropy can evaluate the prediction quality

[58] Claude Elwood Shannon. A mathematical theory of communication. SIGMOBILE 2001.

II. Compute contrastive loss

• Sampled embedding serves as anchors in the training. 

ℒnce =
1
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I. SemanticKITTI
• 64 beams LiDAR
• Collected in Germany
• Most popular benchmark

II. nuScenes
• 32 beams LiDAR
• Collected in America and Singapore
• Different weather and season

III. SemanticPOSS
• 40 beams LiDAR
• Collected in China
• Denser and smaller
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Anno. (%) Method Proj mIoU (%)

100

(AF)2S3Net [5] × 69.7

SquSegV3 [4]
√

55.9

SalsaNext [2] 59.5

0.1

SQN [1] × 50.8

SalsaNext [2]
√

50.1

Ours 55.7

0.01

SQN [1] × 39.1

SalsaNext [2]
√

42.6

Ours 46.2

Analysis
• Improve ~5% compared to SQN and reach 

SOTA
• Outperforms baseline method SalsaNext

[1] SQN. Hu et al. ECCV 2022.
[2] SalsaNext. Tiago et al. ISVC 2020.
[4] SqueezeSegV3. Xu et al. ECCV 2020.
[5] (AF)2S3Net. Cheng et al. CVPR 2021.

(a) Ground Truth (b) Ours (0.1%) (d) Ours (0.01%) (e) SalsaNext [2] (0.01%)(c) SalsaNext [2] (0.1%)
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Anno. (%) Method Proj mIoU (%)

100

PolarNet [6]

×

72.2

Cylinder3D [7] 76.1

(AF)2S3Net [5] 78.0

RangeNet[3]
√

65.5

SalsaNext [2] 72.2

0.1
SalsaNext [2]

√
56.5

Ours 58.7

0.01
SalsaNext [2]

√
44.5

Ours 42.9

Analysis
• Better than SalsaNext in 0.1% annotation
• Clustering fails to associate labels/prototypes 

in 0.01% annotation

[2] SalsaNext. Tiago et al. ISVC 2020.
[3] Rangenet. Milioto et al. IROS 2019.
[5] (AF)2S3Net. Cheng et al. CVPR 2021.
[6] PolarNet. Zhang et al. CVPR 2020.
[7] Cylinder3D. Zhu et al. CVPR 2021.

(a) Ground Truth (b) Ours (0.1%) (d) Ours (0.01%) (e) SalsaNext (0.01%)(c) SalsaNext (0.1%)
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Anno. (%) Method Proj mIoU (%)

100

RandLANet[8]

×

53.5

KPConv [9] 55.2

JS3C-Net [10] 60.2

SquSegV2[11]
√

29.8

SalsaNext [2] 45.0

0.1
SalsaNext [2]

√
38.9

Ours 43.0

0.01
SalsaNext [2]

√
27.4

Ours 31.1

Analysis
• Outperform SalsaNext (baseline) in both 

0.1% and 0.01%

[2] SalsaNext. Tiago et al. ISVC 2020.
[8] RandLANet. Hu et al. CVPR 2020.
[9] KPConv. Thomas et al. ICCV 2019.
[10] JS3C-Net. Yan et al. AAAI 2021.
[11] SqueezeSegV2. Wu et al. ICRA 2018.

(a) Ground Truth (b) Ours (0.1%) (d) Ours (0.01%) (e) SalsaNext [2] (0.01%)(c) SalsaNext [2] (0.1%)
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COARSE3D performs consistently with different backbones.

Methods
SemPOSS
mIoU (%)

SemKITTI
mIoU (%)

Rangenet-21 [3] 25.1 40.7

Ours (Rangenet-21) 28.9 (+3.8) 44.5 (+3.8)

SqueezeSegV3-21 [4] 30.4 42.5

Ours (SqueezeSegV3-21) 36.7 (+6.3) 48.5 (+6.0)

SalsaNext [2] 38.9 52.4

Ours (SalsaNext) 43.0 (+4.1) 57.6 (+5.2)

[2] Tiago et al. Salsanext: Fast, uncertaintyaware semantic segmentation of lidar point clouds. ISVC 2020.
[3] Milioto et al. Rangenet ++: Fast and accurate lidar semantic segmentation. IROS 2019.
[4] Xu et al. Squeezesegv3: Spatially-adaptive convolution for efficient point-cloud segmentation. ECCV 2020.

Choice of backbone
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Architecture ablation

Methods mIoU (%)

Ours 57.57

w/o contrast module 55.44

w/o anchor sampling 56.32

w/o prototype (5k pxl) 56.10

w/o voxel propagation 56.26

w/o Focal loss 42.41

w/o Lovasz loss 56.10



Ablation Study

20[2] Tiago et al. Salsanext: Fast, uncertaintyaware semantic segmentation of lidar point clouds. ISVC 2020.

Anno.
mIoU (%)

SalsaNext [2] Ours

0.001% 30.39 31.69

0.01% 44.00 47.13

0.1% 52.43 56.61

1% 56.16 58.30

100% 56.44 58.39

• Outperform the baseline method in 
the different annotations.

• Reach the comparable performance 
with 100% label at 0.1%

Annotation ablation
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Code is available !

https://github.com/cv-rits/COARSE3D

• An architecture-agnostic framework for weakly-

supervised LiDAR semantic segmentation.

• A prototype memory bank that captures per-class 

dataset information with an  entropy-driven 

sampling technique to sample  more confident 

pixels as anchors.

• Results on 3 baseline architectures and 3 datasets 

demonstrate the effectiveness.
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